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We propose novel numerical method of modelling Bose-Einstein correlations (BEC)
observed among identical (bosonic) particles produced in multiparticle production
reactions. We argue that the most natural approach is to work directly in the
momentum space in which the Bose statistics of secondaries reveals itself in their
tendency to bunch in a specific way in the available phase space. Because such
procedure is essentially identical to the clan model of multiparticle distributions
proposed some time ago, therefore we call it the Quantum Clan Model.

The phenomenon of Bose-Einstein correlations (BEC) is so widely know that we
shall not introduce it here again referring instead to [1]. We shall instead address
problem of the proper numerical modelling of BEC understood as approach which
accounts from the very beginning for the quantum statistical bosonic character of
identical secondaries produced in hadronization process. To our knowledge this
problem was so far considered only in [2](cf., however, [3]). All other approaches
claiming to model BEC numerically [4] use as their starting point the outcomes
of existing Monte-Carlo event generators (MCG) describing multiparticle produc-
tion process [5] and modify them in a suitable way to fit the BEC data. These
modifications are called afterburners. They inevitably lead to such unwanted fea-
tures as violation of energy-momentum conservation or to changes in the original
multiparticle spectra.

In [6] we have proposed afterburner free from such unwanted effects. It was
based on different concept of introducing quantum mechanical (QM) effects in the
otherwise purely probabilistic distributions from those proposed in [7]. Namely,
each MCG provides us usually with a given number of particles, each one endowed
with one of (+/ − /0) charge and with well defined spatio-temporal position and
energy-momentum. On the other hand experiment provides us information on only
the first and last characteristics. The spatio-temporal information is not available
directly (in fact, the universal hope expressed in [1,4] is it can be deduced from the
previous two via the measured BEC). Our reasoning was as follows: (i) BEC phe-
nomenon is of the QM origin, therefore one has to introduce in the otherwise purely
classical distributions provided by MCG a new element mimicking QM uncertain-
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ties; (ii) this cannot be done with energy-momenta because they are measured and
therefore fixed; (iii) the next candidate, i.e., spatio-temporal characteristics, can be
changed but this was already done in [7,4]; (iv) one is thus left with charges and in
[6] we have simply assigned (on event-by-event basis) new charges to the particles
selected by MCG conserving, however, the original multiplicity of (+/ − /0). This
has been done in such way as to make particles of the same charge to be located
maximally near to each other in the phase space by exploring natural fluctuations
of spatio-temporal and energy-momentum characteristic resulting from MCG. In
this way automatically conserve all energy-momenta and do not change multipar-
ticle distributions and do it already on the level of each event provided by MCG .
However, the new assignment of charges introduces a profound change in the struc-
ture of the original MCG. Generally speaking (cf. [6] for details) it is equivalent to
introduction of bunching of particles of the same charge.

This observation will be the cornerstone of our new proposition. Let us remind
that idea of bunching of particles as quantum statistical (QS) effect is not new [8]. It
was used in connection with BEC for the first time in [9] and then was a cornerstone
of the clan model of multiparticle distributions P (n) leading in natural way to their
negative binomial (NB) form observed in experiment [10]. It was introduced in the
realm of BEC in [11] and [2,3]. Because our motivation comes basically from [2] let
us outline shortly its basic points. It deals with the problem of how to distribute in
a least biased way a given number of bosonic secondaries, 〈n〉 = 〈n(+)〉 + 〈n(−)〉 +
〈n(0)〉, 〈n(+)〉 = 〈n(−)〉 = 〈n(0)〉. Using information theory approach (cf., [12])
their rapidity distribution was obtained in form of grand partition function with
temperature T and chemical potential µ. In addition, the rapidity space was divided
into cells of size δy (fitted parameter) each. It turned out that whereas the very
fact of existence of such cells was enough to obtain reasonably good multiparticle
distributions, P (n), (actually, in the NB-like form), their size, δy, was crucial for
obtaining the characteristic form of the 2−body BEC function C2(Q = |pi − pj |)
(peaked and greater than unity at Q = 0 and then decreasing in a characteristic way
towards C2 = 1 for large values of Q) out of which one usually deduces the spatio-
temporal characteristics of the hadronization source [1] (see [2] for more details).
The outcome was obvious: to get C2 peaked and greater than unity at Q = 0 and
then decreasing in a characteristic way towards C2 = 1 for large values of Q one
must have particles located in cells in phase space which are of nonzero sizea.

To illustrate our proposition assume that mass M hadronizes into N = 〈n〉
bosonic particles (we take them as pions of mass m) with equal numbers of (+/−/0)
charges and with limited transverse momenta pT . Suppose that their multiplicity
distribution P (n) follows a NB-like form (i.e., it is broader than Poissonian) and
that their two-particle correlation function of identical particles, C2(Q), has the
specific BEC form mentioned above. To model such process accounting from the
very beginning, for the bosonic character of produced particles we propose the

aIt means then that from C2 one gets not the size of the hadronizing source but only size of the
emitting cell, in [2] R ∼ 1/δy, cf. [13]. In the quantum field theoretical formulation of BEC this
directly corresponds to the necessity of replacing delta functions in commutator relations by a well
defined peaked functions introducing in this way same dimensional scale to be obtained from fits
to data [14]. This fact was known even before but without any phenomenological consequences
[15].
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following steps (illustrated by comparison to some selected LEP e+e− data [16],
cf., Fig. 1):

(1) Using some (assumed) function f(E) select a particle of energy E
(1)
1 and

charge Q(1). The actual form of f(E) should reflect somehow our a priori knowledge
of the particular collision process under consideration. In what follows we shall
assume that f(E) = exp (−E/T ), with T being parameter (playing in our example
the role of ”temperature”).

(2) Treat this particle as seed of the first elementary emitting cell (EEC) and
add to it, until the first failure, other particles of the same charge Q(1) selected
according to distribution P (E) = P0 ·f(E), where P0 is another parameter (playing
the role of ”chemical potential” µ = T · ln P0). This assures that the number of
particles in this EEC, k1, will follow geometrical (or Bose-Einstein) distribution
and accounts therefore for their bosonic character. As result C2(Q) > 1 but only
at one point, namely for Q = 0.

(3) To get the experimentally observed width of C2(Q) one has to allow that
particles in each EEC can have (slightly) different energies from energy of the
particle being its seed. To do it allow that each additional particle selected in point

(2) above have energy E
(1)
i selected from some distribution function peaked at E

(1)
1 ,

G
(

E
(1)
1 − E

(1)
i

)

, where the width of this distribution, σ, is another free parameter.

(4) Repeat points (1) - (3) as long as there is enough energy left. Correct in
every event for every energy-momentum nonconservation caused by the selection
procedure adopted and assure that N (+) = N (−).

As result in each event we get a number of EEC with particles of the same
charge and (almost) the same energy, i.e., picture closely resembling classical clans

of [10] (with no effects of statistics imposed, see Fig. 1). Clans are distributed
in the same way as the particles forming seeds for EEC, i.e., according to Pois-
son distribution. On the other hand, whereas in [10] particles in each clan were
assumed to follow logarithmic distribution, in our QM clans, or EEC, they are by
definition distributed according to geometrical distribution. As a result the overall
distribution of particles in our Quantum Clan Model case will be of the so called
Pòlya-Aeppli type [17]. The first preliminary results presented in Fig. 1 are quite
encouraging (especially when one remembers that so far effects of resonances and
all kind of final state interactions to which C2 is sensitive were neglected here). It
remains now to be checked what two-body BEC functions for other components of
the momentum differences and how they depend on the EEC parameters: T , P0

and σ. So far the main outcome is that BEC are due to EEC’s only and therefore
provide us mainly with their characteristics. This should clear at least some of
many apparently ”strange” results obtained from BEC recently.
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Figure 1. Upper panel: the proposed algorithm is similar to the classical clan model proposed
in [10] but its clans contain particles of the same charge and (almost) the same energies and are
distributed according to geometrical distribution what results in overall Pòlya-Aeppli distribution,
PPA(n) [17], insted of NB one, PNB(n). Lower panels contain examples of our results (data
from [16] were used for comparison). Left panel: fit to charge multiplicity distribution. Right
panel: results for C2(Q = |p1 − p2|) correlation function (one dimensional phase space was used
here only). Two different sets of parameters have been used. Notice that whereas they lead to
essentially similar P (n) the resulting C2(Q) are drastically different.
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